
ERDC MSRC/PET TR/01-04

FORTRAN 77 to FORTRAN 90
Source Code Conversion and Maintenance Tools

by

Richard Weed

28 February 2001

02h00301

Work funded by the DoD High Performance Computing
Modernization Program ERDC
Major Shared Resource Center through

Programming Environment andTraining (PET)

Supported by Contract Number: DAHC94-96-C0002
CSC Nichols

Views, opinions and/or findings contained in this report are those of the author(s) and should not be con-
strued as an official Department of Defense Position, policy, or decision unless so designated by other
official documentation.

FORTRAN 77 to FORTRAN 90 Source Code Conversion and

Maintenance Tools

Richard Weed �

Mississippi State University

1 Introduction

For most users, converting a large legacy FORTRAN 77 code to FORTRAN 90 is a daunt-
ing task. Most legacy FORTRAN code is written in UPPER CASE format that is diÆcult
to read for new users more familiar with C or FORTRAN 90 code. In additon, the �xed �eld
length of legacy FORTRAN 77 code makes code modi�cation more diÆcult than the free �eld
source format of FORTRAN 90. To assist the Army Engineer Research and Development
Center(ERDC) Major Shared Resource Center(MSRC) users in converting from FORTRAN
77 to FORTRAN 90, a small package of FORTRAN and C routines has been developed.
The routines described in this report are designed to ease some of the burden of converting
FORTRAN 77 codes to FORTRAN 90 and to assist in the overall code maintenance and
documentation task.

The FORTRAN and C routines in this package are designed to assist in the conversion
of FORTRAN 77 �xed format source to FORTRAN 90 free (or �xed) formats. In addition,
some small C utilities that are callable from FORTRAN are included. The C routines can
be used in other applications. The following sections give descriptions of the three primary
source conversion and maintenance codes in the package along with usage information and
instructions on how to build the codes on a variety of platforms. Examples of the output
from the primary conversion utility along with information on how to use the C utilities in
other codes are given in the Appendices.

2 Fortran Source Conversion and Maintenance Codes

2.1 ftof90.f90

ftof90 is the main program in the package. Its principal function is to convert FORTRAN
77 �xed length source, written in all CAPS, to a more readable (for most people) lower case

�ERDC MSRC PET CSM Onsite Lead, Engineer Research and Development Center, ATTN: CEERD-

IH-C, 3909 Halls Ferry Road, Vicksburg, MS 39180. E-mail: rweed@erdc.hpc.mil

1

ERDC MSRC PET/TR/01-04 2

format that can be used as FORTRAN 90 free �eld or �xed �eld source [1]. It is NOT a
complete F77 to F90 conversion routine. It does not realign do and if blocks and replace
continue statements with enddos etc. See the convert.f90 program by Metcalf and Reid [2]
for a conversion routine that can realign code blocks. Another feature of ftof90 is its ability
to process ALL of the �les in a directory with a given �le extension.

ftof90 will perform the following code conversions:

1. Convert all UPPER CASE text to lower case, except text between accepted string
delimiters (' or "). The code will detect strings broken across continuation lines. The
default is to convert to lower case, but this can be overriden by user input. (Option)

2. Reformat default and/or user de�ned keywords to either a Leading Cap format (i.e.
Read, Do, etc.) or an ALL CAP format. Note: this option turns on lower case
conversion if it was not selected. The default is no conversion. (Option)

3. Reformat continuations to F90 free �eld form with all continuation characters in column
six reset to an &. An ampersand is added to either column 73 or the current end of line
plus two characters (except when an embedded comment card is detected) of the card
that preceeds the current continuation. This conforms to the F90 style of continuations.
Placing the & in columns 73 through 80 will allow the code to be used as either �xed
or free format. The code checks for tab characters in columns one through six during
its check for existing continuation characters. However, no attempt is made to expand
and remove the tabs. The default is no conversion. (Option)

WARNING: The current code will NOT handle the cases a comment card between
continuations or continuations inside cpp #ifdef blocks. If a target code has one or
more of these conditions then modi�cation of continuations to F90 format should not
be selected. However, changing the current column six character to an & can still
be performed. If F90 free �eld format is needed, continuation modi�cation can still
be selected. Just be prepared to edit individual �les to correct the problems that
arise from embedded comments. A warning message will be printed for each �le that
contains these conditions.

4. Modify F77 style relational operators (i.e. .eq., .ne., .ge., .le., .lt., .gt.) to the F90
C-like forms (i.e. == , /=, >=, <=, < , >). This feature also turns on lower case
conversion. The default is no conversion. (Option)

5. Change comment characters in column one from F77 style to a !. The default is to
change the comments, but this can be overridden by user input. (Option)

6. Remove MS-DOS ^M (EOL) and ^Z (EOF) characters. (Always done)

7. Strip trailing blanks to reduce �le size. (Always done)

ERDC MSRC PET/TR/01-04 3

2.1.1 Using ftof90

ftof90 is an interactive program that prompts for user input. Most of the input requires
either a yes (y) or no (n or enter) response. The responses for an entire session can be
saved to a script �le so that the user can perform the same conversions on other sets of �les
without having to reenter the responses by hand. The response �le is read from standard
input so the user need only type ftof90 <script.txt, where script.txt is the name of the saved
script �le, to execute the program without reentering the responses interactively.

ftof90 will process either a user speci�ed single �le or ALL of the �les with a speci�ed �le
extension in the the current directory. ftof90 assumes that the default input �le extension
is .f and the default output �le extension for the converted �le is .f90. This can be changed
by user input. If the speci�ed input and output �le extensions are the same, a \ new" is
appended to the output �lename (i.e. the converted version of �le.f will be named �le new.f).
This option allows the user to perform code conversions on .f90 �les that are written in all
caps or generate a �xed �eld �le with a .f extension for use with the xlf compiler on IBM
SPs and SMPs.

The default keywords are de�ned in default keywords.f90. The �le new keywords.txt in-
cluded in the package illustrates how additional keywords can be de�ned by the user. The
code has �xed left and right conditions that must be met before a string is accepted as a
keyword. The values in default keywords.f90 represent the most common control and type
de�nition keywords. Intrinsic functions such as tan, sin, etc. are not de�ned but can be
included in the user's new keywords.txt �le. The user has the option of replacing the default
keywords with the contents of new keywords.txt or appending the contents to the existing de-
fault keyword list. A listing of the current default keywords.f90 routine that sets the default
keywords is given in Appendix C.

An example of a typical execution of ftof90 is given in Appendix A. The sample FORTRAN
77 code given in Appendix A.1 was converted into the FORTRAN 90 free �eld format code
shown in Appendix A.2. The interactive session that generated the FORTRAN 90 code is
shown in Appendix A.3. These data illustrate the ability of ftof90 to generate more readable
FORTRAN 90 source from legacy FORTRAN 77 code without changing the meaning of the
original source.

2.1.2 Sample new keywords.txt �le

The following illustrates the format of the new keyword.txt �le. The �rst input is the
number of entries in the �le. Each subsequent line is a free �eld format character variable.

new keywords.txt :

ERDC MSRC PET/TR/01-04 4

23

'elseif'

'Elseif'

'select'

'case'

'default'

'contains'

'module'

'public'

'private'

'Enddo'

'Endif'

'call'

'atan'

'asin'

'acos'

'tan'

'sin'

'cos'

'mod'

'ichar'

'achar'

'char'

'exit'

2.1.3 Subroutines Called by ftof90

ftof90 calls the following subroutines:

1. mod keywords.f90 : Modi�es keywords to either leading cap or all cap format.

2. mod relationals.f90 : Modi�es relational operators.

3. default keywords.f90 : Sets default keyword values.

4. blank card.f90 : Sets a character string of a given length to all blanks.

5. com or cpp.f90 : Determines if the current line is a comment or a cpp directive.

2.2 dos2unx.f90

dos2unx.f90 is a standalone program that will strip the MS-DOS EOL and EOF marks
(^M and ^Z) from a source �le or ALL of the �les with a given extension in the current
directory. Most current UNIX machines will have a system MS-DOS to Unix conversion

ERDC MSRC PET/TR/01-04 5

routine available. However, these system routines usually work on only one �le at a time.
Another advantage of this code is that it is transportable to any machine with F90 and C
compilers. The output �les will have �lenames consisting of the old �lename and extension
with a \ unx" appended to the �le name (i.e. �le.f becomes �le unx.f). The primary
advantage of dos2unx over system routines, such as the to unix routine found on SGI systems,
is its ability to process all of the source �les with a given �le extension in the current directory.

2.3 printps.f90

printps.f90 will generate Postscript listings in two column landscape format (i.e. 2up
format) of all of the �les with a speci�ed extension in the current directory. It RE-
QUIRES a Unix csh shell script �le named lp2upf that calls a system text to Postscript
converter such as lptops on SGI machines or the GNU enscript [3] routine. Sample
scripts for lptops and enscript are included in the software package. As with dos2unx,
the primary advantage of printps is its ability to process all of the �le with a given �le
extension in the current directory. Individual �les can be processed by executing the
lp2upf script on the selected �le, i.e. lp2upf �le.f will generate a Postscript �le named
�le.f.ps. See Appendix C for an example of printps/lp2upf output using the enscript rou-
tine. The following lines illustrate the contents of the lp2upf script using lptops and enscript.

lptops:

#! /bin/csh -f

/usr/lib/print/lptops -FCB -H -G -M2 -P7pt -O1pt -U \$1 | cat >$1.ps

enscript :

#! /bin/csh -f

/usr/bin/enscript -G2r -L60 -f Courier-Bold7 -F Courier-Bold12 -p $1.ps $1

3 C Utility Routines

The following C utility programs are included in this package. They are designed to be
called from FORTRAN 77 or FORTRAN 90 and can be used on all of the ERDC MSRC
systems. The utilities are as follows:

1. syscall.c: A FORTRAN callable wrapper around the C system() function. Executes a
system shell command passed as a character string from FORTRAN.

2. homedir.c: Returns the user's home directory as set by the HOME environment vari-
able.

3. currentdir.c: Returns the current directory.

ERDC MSRC PET/TR/01-04 6

4. getenvf.c: Returns the value set for an environment variable. The variable name is
passed as a character string.

These routines can be compiled and linked seperately with the user's FORTRAN 90 code.
An example FORTRAN 90 routine that illustrates how the C utilities can be called from
FORTRAN is given in Appendix B.

4 Building the Source Utilities

The user must have both a F90/F95 compiler and a C compiler available to build ftof90,
dos2unx, and printps along with make. The routines are built using make on most machines
by simply typing make while inside the current directory. The make �le structure is set
up to de�ne system speci�c information (i.e. compiler names, ags, etc.) by using a shell
script run from inside make (make defaults) to build a make include �le that de�nes the
appropriate data. make defaults uses the uname function to de�ne the system architecture.
Values for the following systems are set by default: SGI IRIX and IRIX64 systems, IBM
AIX systems, CRAY T3E systems, and Red Hat Linux systems using gcc and the Lahey
F95 Express compiler. The make�le sets generic Unix values if one of the default machines
is not detected. make defaults should be modi�ed as needed for other machines. Copy one
of the existing Elseif sections and modify as needed for a particular architecture.

NOTE: The target operating systems for this software are Unix and Unix-like oper-
ating systems such as Linux and FreeBSD. The current make�le will not work on MS-
DOS/WINDOWS. The code should be compiled by hand and modi�ed as needed for non-
Unix machines. The syscall strings in ftof90, dos2unx, and printps will have to be modi�ed
to be consistent with MS-DOS commands (i.e. rm to del, ls to dir, etc.) See Make�le utils
for the subroutine dependencies.

5 General Code Usage

As stated earlier, the codes are interactive and prompt the user for the correct input. Most
responses require a y for yes or some other character (n or just an enter/return) for no. When
prompted for a �le extension, type the extension WITHOUT the leading period (i.e. enter
f not .f, etc.). All of the code conversion utilities create new output �les. Therefore, the
original source �les are never changed or overwritten.

6 Code Validation and Veri�cation

The utilities described in the package have executed successfully on a wide range of archi-
tectures. The routines were veri�ed with both test data such as the testsrc.f �le found in
the software package and real legacy codes. Although every attempt was made to anticipate

ERDC MSRC PET/TR/01-04 7

potential problems that might arise in legacy codes, it is possible that some legacy codes will
be encountered that have code structures that ftof90 and the other codes in this package
will not process correctly. Therefore, any problems encountered with using the codes in this
package should be addressed to the author. In addition, please read the standard disclaimers
contained in the source code before using any of the routines in this package.

7 Obtaining the Code, Who to Contact, Etc.

ERDC MSRC users can access the source code and compiled binaries for the utilities
via the /usr/local/usp/PETtools directory that exists on each of the ERDC MSRC HPC
systems. The source code, make �les, PDF and Postscript copies of this report, and the
executable �les are contained in the Srcutils subdirectory. Requests for the code package
from outside the ERDC MSRC user community should be sent to the author through the
ERDC MSRC Customer Assistance Center via email addressed to info-hpc@erdc.hpc.mil.
Questions about the code and bug reports can be sent directly to the author via email
addressed to rweed@erdc.hpc.mil.

Acknowledgments

This work was funded inpart by the DoD High Performance Computing Modernization
Program ERDC MSRC through Programming Environment and Training (PET), Contract
Number: DAHC 94-96-C0002, Computer Sciences Corporation. Views, opinions, or �ndings
contained in this report are those of the authors and should not be construed as an oÆcial
Department of Defense position, policy, or decision unless so designated by other oÆcial
documentation. Permission to publish this paper is granted by the Headquarters, U.S.
Army Corps of Engineers.

References

[1] Ellis, T.M.R., Phillips, I.R., Lahey, T.M. FORTRAN 90 Programming. Addison-
Wesley, Inc., Reading, MA, 1994.

[2] Metcalf, M. and Reid, J.K., FORTRAN 90 Explained. Oxford University Press, Oxford,
England, 1990.

[3] Anon. http://www.gnu.org

ERDC MSRC PET/TR/01-04 8

APPENDIX A. Test Program Input and Example Output

A.1 ftof90 Test Program Input - testsrc.f

PROGRAM TESTSRC

C

! This is a test OF THE ftof90 UtIlItY

! The following is NOT a real program so

! DON't try to compile and run

C XXXXXXXXX - Strings and comments keep same case

C

REAL AA(100)

CHARActer*3 ans

#ifdef (TEST)

AB=b

#else

AB=c

#endif

#ifdef (TEST2)

C

*

C

! test ''' TEST

C Test of continuation in comments

C & test

C

TAB=Char(9)

IF (ans.eq.'Y' .OR. ANS.eq."y") THEN

ANS = 'MYANS'

ELSEIF

string2 = "TEST of'Tt' StRinG

& "

End If

If (ans.eq.'y')CALL A

IF (b.eq.c) Then

b=ab

End IF

If (b.eq.ab) goto 3

call BBB

WRite(*,'('' test of continuations ! trailing comment

; continuation 1

2 Continuation 2

3 '')')

Write(*,'(" A1, F10, L3",'' A=b '',

& i3, "c=d",

& A6,)') A, B, C

Y=ab+b /

; C

b = tan(ab) + sin(b) + tan(d)+tan(abc)

c

End

ERDC MSRC PET/TR/01-04 9

A.2 Output from ftof90 - testsrc.f90

Program testsrc

!

! This is a test OF THE ftof90 UtIlItY

! The following is NOT a real program so

! DON't try to compile and run

! XXXXXXXXX - Strings and comments keep same case

!

Real aa(100)

Character*3 ans

#ifdef (TEST)

ab=b

#else

ab=c

#endif

#ifdef (TEST2)

!

!

!

! test ''' TEST

! Test of continuation in comments

! & test

!

tab=Char(9)

If (ans == 'Y' .or. ans == "y") Then

ans = 'MYANS'

ElseIf

string2 = "TEST of'Tt' StRinG &

& "

End If

If (ans == 'y')Call a

If (b == c) Then

b=ab

End If

If (b == ab) GoTo 3

Call bbb

Write(*,'('' test of continuations &! trailing comment

& continuation 1 &

& Continuation 2 &

& '')')

Write(*,'(" A1, F10, L3",'' A=b '', &

& i3, "c=d", &

& A6,)') a, b, c

y=ab+b / &

& c

b = Tan(ab) + Sin(b) + Tan(d)+Tan(abc)

!

End

ERDC MSRC PET/TR/01-04 10

A.3 Typical Interactive Session for ftof90

The following is a reconstruction of the complete interactive session used to generate the
output shown in Appendix A.2.

****** Welcome to ftof90 ******

Answer the following with a Y or y for yes and

either an n or carraige return (enter) for no

Default file extensions are f (input) and f90 (output)- Change-(y/n) : n

Modify all files in current dir-(y/n) : n

Enter file name of file to modify : testsrc.f

Source code is converted to lower case by default

Do you wish to keep old file case format-(y/n) : n

Convert comments to lower case (Default is no) (y/n) : n

Modify FORTRAN Keywords to Leading or ALL Cap Format-(y/n) : y

Default keyword format is Leading Caps. Change to all CAPS (y/n) : n

Modify F77 relationals to F90 forms (ie .eq. to == etc.)-(y/n) : y

F77 style comments converted to ! by default

Keep F77 style comments (c,C or *) - (y/n) : n

Default line length is 80 charactes- modify-(y/n) : n

Modify continuations to F90 Free field format-(y/n) : y

Current column six characters will be changed to an &

This will handle the case of continuing a character string by default

Default location of free field continuation & is current end of line

plus two characters. Placing the & in column 73 will allow you to use the

same source for both fixed and free formats

Change default location of ampersand to column 73 (y/n) : n

Checking for a new_keywords.txt file

Keyword file found - Replace(r) or append(a) to defaults (r/a) : a

Save response script to file convert_script.txt (y/n) : y

Converting testsrc.f to testsrc.f90

ERDC MSRC PET/TR/01-04 11

APPENDIX B. C Utilities Fortran 90 Example

Program testcutils

!

! Tests C utilities

!

Implicit NONE ! Force explicit type definition

!

Integer, Parameter :: max_len=51

Character(LEN=17) :: cmdstring

Character(LEN=31) :: home_name

Character(LEN=51) :: current_name

Character(LEN=max_len) :: workdir, envval

Integer :: ret,ie

!

Integer, External :: getenvf ! The following need to be externals

Integer, External :: homedir

Integer, External :: currentdir

!

! sycall executes the shell command string cmdstring

!

cmdstring = "ls -1 *.f >ls.out"

Call syscall(cmdstring) ! lists of all .f files into file ls.out

!

! homedir is called from FORTRAN as follows and returns the users

! home directory as set by the environment variable $HOME

!

ret=homedir(home_name) ! ret = length of homename

Print *,' Home Directory Name =', home_name(1:ret)

!

! currentdir is called from FORTRAN as follows and returns the users

! current directory

!

ret=currentdir(current_name) ! ret = length of current_name

Print *,' Current Directory Name =', current_name(1:ret)

!

! getenvf is called from FORTRAN as follows and returns the value

! set for the environment variable $WORKDIR

!

envval = 'WORKDIR'

ie = LEN_TRIM(envval)

ret=getenvf(envval(1:ie),workdir) ! ret = length of WORKDIR string

Print *,' $WORKDIR =',workdir(1:ret)

!

Stop

!

End Program testcutils

ERDC MSRC PET/TR/01-04 12

APPENDIX C. printps/lp2upf Listing of default keys.f90

The listing on the following page illustrates the output generated by the GNU enscript
routine using the parameters de�ned previously for the lp2upf script �le. Similar output
can be generated by lptops. This �le also shows the current default values for FORTRAN
77 and FORTRAN 90 keywords used by ftof90.

02/02/01
09:21:59 1default_keywords.f90

 Subroutine Default_keywords(keyword,kword_length,nkeys, &
 kwmax)
!
! Programmed by Richard Weed, Miss. State University
!
! Set default keywords and string length. Assumes keywords
! in input file were set to all lower case by ftof90.
! The program checks for the left and right conditions that
! signify a key_word. Both conditions must be met before
! the string is accepted as a keyword. Therefore, you do
! NOT need to use spaces etc. to delimit strings. Subroutine
! mod_keywords will check for the correct left and right
! conditions
!
! Used by ftof90.f90
!
!
!** Authors Disclaimer **
!** **
!** This codes was developed under U.S. Government funding and is released **
!** to the public under the terms of the following disclaimer. The code **
!** works as advertised but no guarantee is made that it is 100 per cente **
!** free of bugs. Therefore, you accept the full risk and responsibility **
!** for any damages that occur from using the code. Use of any part of **
!** this code is taken by the author to be an implicit agreement of these **
!** terms. **
!** U.S. Government Disclaimer **
!** **
!** This program is furnished by the U.S. Army Engineer Research and **
!** Development Center, Major Shared Resource Center (ERDC MSRC) "as is " **
!** and is accepted and used by the recipient with the express **
!** understanding that the Government makes no warranties, expressed or **
!** implied, concerning the accuracy, completeness, reliability, usability **
!** or suitability for any particular purpose of the information and data **
!** within this program or furnished in connection therewith, and the **
!** Government shall be under no liability whatsoever to any person by **
!** reason of any use made thereof. This program belongs to the U.S. **
!** Government; therefore, the recipient further agrees not to assert any **
!** proprietary rights therein or to represent the source code as belonging **
!** to anyone other the U.S. Government. **
!**
!
! Code Begins HERE
!
 Implicit NONE
!
 Integer :: nkeys, kwmax, j
 Character(LEN=*) :: keyword(kwmax)
 Integer :: kword_length(kwmax)
!
! The following are the most common control and type
! definition keywords. Define specific intrinsic functions
! (tan, cos, char, atan, etc) as needed in new_keywords.txt
!
 nkeys = 45
 keyword(1) = ’subroutine’
 keyword(2) = ’if’
 keyword(3) = ’do’
 keyword(4) = ’continue’
 keyword(5) = ’endif’

 keyword(6) = ’enddo’
 keyword(7) = ’end’
 keyword(8) = ’dimension’
 keyword(9) = ’equiva’
 keyword(10) = ’function’
 keyword(11) = ’call’
 keyword(12) = ’return’
 keyword(13) = ’parameter’
 keyword(14) = ’inclu’
 keyword(15) = ’real’
 keyword(16) = ’integer’
 keyword(17) = ’implicit’
 keyword(18) = ’write’
 keyword(19) = ’read’
 keyword(20) = ’print’
 keyword(21) = ’common’
 keyword(22) = ’then’
 keyword(23) = ’else’
 keyword(24) = ’stop’
 keyword(25) = ’goto’
 keyword(26) = ’data’
 keyword(27) = ’double’
 keyword(28) = ’precision’
 keyword(29) = ’float’
 keyword(30) = ’namelist’
 keyword(31) = ’character’
 keyword(32) = ’logical’
 keyword(33) = ’format’
 keyword(34) = ’open’
 keyword(35) = ’close’
 keyword(36) = ’while’
 keyword(37) = ’external’
 keyword(38) = ’intrinsic’
 keyword(39) = ’ complex’
 keyword(40) = ’ entry’
 keyword(41) = ’ program’
 keyword(42) = ’pointer’
 keyword(43) = ’go to’
 keyword(44) = ’go’
 keyword(45) = ’to’
!
! Get Keyword Lengths to last non blank character
!
 Do j=1,nkeys
 kword_length(j) = LEN_TRIM(keyword(j))
 EndDo
!
 End Subroutine Default_keywords

